Overcoming Offset

Prof. Kofi Makinwa

Electronic Instrumentation Laboratory / DIMES Delft University of Technology Delft, The Netherlands

email: k.a.a.makinwa@tudelft.nl

Delft University of Technology

UPC 2009

Motivation

- The offset of amplifiers realized in standard IC technologies is typically in the **millivolt** range
- However, many analog circuits e.g. opamps, comparators, ADCs and DACs require amplifiers with microvolt offsets
- Also, many sensors (e.g. thermopiles, bridges, halleffect sensors etc.) output DC signals that need to be processed with microvolt precision
- This tutorial will focus on **dynamic** offset-cancellation (DOC) techniques, with which offset can be reduced to the **microvolt** level.

Outline

- Differential amplifiers
 - o Offset and 1/f noise
- Dynamic Offset Cancellation (DOC)
 - Auto-zeroing
 - Correlated Double-Sampling (CDS)
 - o Chopping
- Summary
- References

What is Offset?

- When the input of a REAL amplifier is shorted, $V_{out} \neq 0!$
- The **offset** V_{os} is the input voltage required to make $V_{out} = 0$. It is typically in the range: 100µV to 10mV.
- Note: In CMOS, input offset currents are negligible.

UPC 2009

© K.A.A. Makinwa

Differential Amplifiers

Differential amplifiers are often used to amplify DC signals.

Their balanced structure is

- Nominally offset free
- Rejects common-mode and power supply interference
- Easily realized in both CMOS and bipolar technologies

Offset in Differential Amplifiers

Component mismatch e.g. $R_1 \neq R_2$, $M_1 \neq M_2 \Rightarrow$ offset

Mismatch is mainly due to

- Doping variations
- Lithographic errors
- Packaging & local stress

All things being equal

- Bipolar \Rightarrow V_{os} ~ 0.1mV
- CMOS \Rightarrow V_{os} is 10 -100x worse!

Amplifier Behaviour Near DC

Characterized by

- Offset
- Drift
- 1/f (flicker) noise
- Thermal noise
- 1/f corner frequency

What to Do?

Offset and 1/f noise are part of life!

But we can reduce offset "enough" by

- 1. Using "large" devices and good layout¹ \Rightarrow 1mV
- 2. Trimming \Rightarrow 100µV drift over temperature (MOS)
- 3. Dynamic offset-cancellation (DOC) techniques $\Rightarrow 1\mu V$

DOC techniques also

- Reduce drift and 1/f noise
- Improve PSRR and CMRR

Mismatch

Determined by:

- 1. Lithographic accuracy e.g. $R = \rho L/W$
 - $\Rightarrow \Delta R/R \sim \Delta L/L + \Delta W/W$
 - \Rightarrow Matching improves with area!

- 2. Doping Variations $\Rightarrow \Delta R/R$ limited to 0.1% even for large <u>neighboring</u> resistors
- 3. Mechanical stress due to metal lines or packaging

UPC 2009

Good layout \Rightarrow

- Large Devices
- Exclusive use of unit cells (and dummies)
- Currents in unit cells flow in the same direction

Trimming

 \Rightarrow Cancel offset by adjusting an on-chip component

- ✓ Low circuit complexity
- ✓ Minimal effect on circuit bandwidth
- ✗ Requires test equipment
- Does not reduce drift or 1/f noise
- * Requires an analog memory, e.g.
 - Fusible links (Zener diodes)
 - Laser-trimmed resistors
 - PROM + DAC (component array)

Trimming a BJT Differential Amp

$$V_{os} = V_T \left(\frac{\Delta R}{R} + \frac{\Delta I_S}{I_S}\right)$$

 $V_T = kT/q = 26mV @ 300K$

• $V_{OS} \sim 0.1 \text{mV}$ is possible!

After trimming (via ΔR)

- V_{OS} ~ 0
- Also temperature coefficient of V_{OS} (TCV_{os}) ~ 0

Trimming a MOSFET Diff. Amp (1)

$$V_{os} = \Delta V_{TH} + \frac{I_D}{g_m} \left(\frac{\Delta R}{R} + \frac{\Delta \beta}{\beta} \right)$$

where $\beta = \mu C_{ox}(W/L)$

- $\Delta V_{TH} \sim 1 mV$ and temp. independent
- I_D/g_m is temp. dependent

After trimming

- $V_{OS} \sim 0$ but $TCV_{OS} \sim 1 \mu V/^{\circ}C$
- Much worse than bipolar!

Trimming a MOSFET Diff. Amp (2)

$$V_{os} = \Delta V_{TH} + \frac{I_D}{g_m} \left(\frac{\Delta R}{R} + \frac{\Delta \beta}{\beta} \right)$$

where $\beta = \mu C_{ox}(W/L)$

Better trimming

 Trim V_{TH} & β independently at room temperature!
 ⇒ TCV_{OS} ~ 0.33µV/°C (3σ)

M. Bolatkale et al., ISSCC 08

Trimming: Summary

- Simple, does not limit BW
- Does not reduce drift or 1/f noise
- Requires test equipment and an analog memory
- Works very well with BJT diff. amps since it nulls both $V_{\rm OS}$ and $TCV_{\rm OS}$
- Works less well with MOSFET diff. pairs poorly defined TCV_{OS} \Rightarrow 100µV drift over temp.
- Higher performance \Rightarrow Dynamic offset cancellation

Dynamic Offset Cancellation (DOC)

Two basic methods²

- 1. Measure the offset somehow and then subtract it from the input signal \Rightarrow Auto-zeroing
- 2. Modulate the offset away from DC and then filter it out \Rightarrow Chopping

Both methods also reduce low frequency noise and improve common-mode & power supply rejection

Auto-zero Principle (1)

Auto-zero phase

- S_1 , S_2 closed, S_3 open $\Rightarrow V_{out} = V_{os}$ \Rightarrow offset stored on C_{az}
- Amplifier is unavailable

© K.A.A. Makinwa

Auto-zero Principle (2)

Amplification phase:

- S_1 , S_2 open, S_3 closed $\Rightarrow V_{in}$ is amplified
- *Finite* voltage gain A \Rightarrow error in sampled offset \Rightarrow input-referred residual offset V_{res} = V_{os}/(A+1)
- Charge injection is also a problem ...

UPC 2009

Charge Injection (1)

Consists of two components

- 1. Channel charge, $Q_{ch} = WLC_{ox}(V_{GS}-V_t)$
- 2. Charge transfer via the overlap capacitance between gate and source/drain \Rightarrow clock feed-through

Problematic when a MOSFET switches **OFF**.

Charge Injection (2)

CI error voltage ΔV_{ini} depends on many factors^{3,4}

- Source voltage and impedance
- Clock amplitude & slew rate
- Transistor area (WL) (smaller \Rightarrow better)
- Value of C_{az} (larger \Rightarrow better)
- In 0.7µm CMOS, minimum-size NMOS, 2.5V step & 10pF $\Rightarrow \Delta V_{inj} \sim 250 \mu V$

UPC 2009

Mitigating Charge Injection (CI)

- Use differential topologies
 ⇒ CI is a common-mode signal
 ⇒ 1st order cancellation
- Use small switches & big caps (subject to noise & BW requirements)
- For single-ended topologies dummy switches help^{3,4}
- But area of main switch will be ~2x minimum size ⇒ more CI ⇒ limited benefit

Sampling the offset: kT/C noise

- Thermal noise of R_{on} is filtered by C_{az}
- When the switch is opened the instantaneous noise voltage is held on C_{az}
- Total noise power = kT/C_{az} (10pF @ 300K \Rightarrow 20.3 μ V)
- Large capacitance \Rightarrow accurate sampling of V_{os}

Output-Referred Auto-zeroing

Amplifier's offset is now completely cancelled^{5,6}

- Gain of 1st amplifier reduces effects of charge injection and kT/C noise ⇒ sampling capacitors can be smaller
- **But** too much gain \Rightarrow clipping! \Rightarrow A₁ is typically < 200

UPC 2009

Residual Offset of Auto-zeroing

Determined by

- Charge injection
- Leakage on C_{az}
- Finite amplifier gain

In practice

- Minimum size switches
- C_{az} as large as possible (sometimes external)
- Multi-stage amplifier topologies

Results in residual offsets of $1-10\mu V$

Residual Noise of Auto-zeroing (1)

$$V_{n,az}(f) = V_n(f)^*(1 - H(f))$$

H(f) is the frequency response of the S&H

- $H(f) = sinc(\pi f/f_s) \Rightarrow LPF$
- \Rightarrow 1 H(f) is a HPF
- \Rightarrow reduction of both offset and 1/f noise
- \Rightarrow but sampled thermal noise will fold back to DC

Residual Noise of Auto-zeroing (2)

- Noise bandwidth B > f_s (due to settling considerations)
 ⇒ input noise will fold back (alias) to DC
- The result is then LP filtered by the sinc(π f/f_s) function

Residual Noise of Auto-zeroing (3)

- S&H with 100kHz clock & 50% duty-cycle
- Noise aliasing \Rightarrow 6x increase in LF noise voltage!
- Notches at multiples of **2**fclock due to 50% duty cycle²
- Sampled noise spectrum obtained with Pnoise^{9,10}

Residual Noise of Auto-zeroing (4)

- Detailed analysis² ⇒ significant reduction of 1/*f* noise
 IF f_s >> 1/*f* corner frequency
- Noise aliasing \Rightarrow LF power increased by the undersampling factor (USF) = 2B/f_s \Rightarrow factor 3 to 6 in volts

Continuous Output

 Basic auto-zero principle ⇒ the amplifier is not continuously available

Solutions

- Two AZ'ed amplifiers connected in parallel ⇒ Ping-pong architecture
- An AZ'ed amplifier nulls the offset of another amplifier ⇒ Offset stabilization

AZ Ping-Pong Amplifier

- Input signal "bounced" between two autozeroed amplifiers^{11,12}
- Output V_{out} is then a quasi-continuous signal
- But switching spikes limit performance
- Randomized switching reduces spikes¹³

Offset Stabilization (OS)

- Also called continuous-time AZ
- Low bandwidth, low offset compensating amplifier ⇒ Auto-zeroed or chopped

UPC 2009

AZ Offset-Stabilized Amplifier

- Auto-zeroed nulling amp cancels the offset of main amplifier^{14,15}
- Continuous output and less spikes
- But poor overload performance, i.e. when V₊ – V₋ > V_{os}
- Amplifier cannot be used as a comparator

Correlated Double Sampling (CDS)

- Sometimes only a signal **difference** is required e.g. in image sensors
- Phase 1: $V_1 = A(V_{in1} + V_{os})$
- Phase 2: $V_2 = A(V_{in2} + V_{os})$

$$\Rightarrow (V_1 - V_2) = A(V_{in1} - V_{in2})$$

• CDS also suppresses 1/f noise

CMOS Image Sensors

• Correlated-double sampling removes offset and 1/f noise

column

Auto-Zeroing: Summary

- Offsets in the range of $1-10\mu V$ can be achieved
- No loss of bandwidth with appropriate amplifier topologies (ping-pong, offset-stabilization)
- Sampled data technique \Rightarrow kT/C noise is an issue
- Noise aliasing will occur \Rightarrow increased LF noise
- DOC technique of choice in sampled-data systems e.g. switched-capacitor filters, ADCs etc.

Chopping Principle

Signal is modulated, amplified and then demodulated¹⁶

- + Output signal is continuously available
- Low-pass filter required

Square-wave Modulation

- Easily generated modulating signal
- Modulator is a simple polarity-reversing switch
- Switches are easily realized in CMOS

Chopping in the Time Domain

• $V_{res} = 0$ IF duty-cycle of V_{ch} is exactly 50% \Rightarrow flip-flop

• If V_{os} = 10mV & f_{ch} = 50kHz, then 1ns skew $~\Rightarrow~V_{res}$ = 1 μV

© K.A.A. Makinwa

Chopping in the Frequency Domain

UPC 2009

© K.A.A. Makinwa

Residual Noise of Chopping

- 1/f noise is completely removed
 IF f_{ch} > 1/f corner frequency
- Significantly better than auto-zeroing!

Bandwidth & Gain Accuracy

- Limited BW \Rightarrow lower effective gain A_{eff} and chopping artifacts at even harmonics of f_{ch}
- Gain error < $10\% \Rightarrow BW > 6.4f_{ch}$

Chopper Opamp with Feedback

- Feedback resistors \Rightarrow Accurate gain^{17,18}
- To suppress V_{os2}, A₁ should have high gain
- Miller capacitors C_m also suppress ripple
- Minimum ripple \Rightarrow high chopping frequencies

UPC 2009

© K.A.A. Makinwa

Residual Offset of Chopping (1)

- Due to mismatched charge injection and clock feedthrough at the input chopper^{19,20}
- Causes a typical offset of $1-10\mu V$
- Input spikes \Rightarrow bias current (typically 50pA)

UPC 2009

Residual Offset of Chopping (2)

- Residual offset² = $2f_{ch} V_{spike} \tau$
- Spike shape (τ) depends on source impedance e.g. feedback resistors around an opamp

Design Considerations

Input chopper

- Use minimum size switches
- Good layout \Rightarrow symmetric, balanced clock coupling
- Ensure that switches "see" equal impedances
- Use a flip-flop to ensure an exact 50% duty-cycle

Chopping frequency f_{ch}

- Higher than 1/f noise corner frequency
- Not **too** high, as the residual offset increases with f_{ch}

Amplifier BW >> f_{ch} to minimize gain errors

Chopped Transconductor²²

- Choppers see low & symmetric impedances
- Allows high freq chopping
- PMOS chopper demodulates signal
- NMOS chopper
 DEMs NMOS
 current sources

Lower Residual Offset

- Residual offset² = $2f_{ch} V_{spike} \tau$
- Low residual offset ⇒ reduce chopping frequency, reduce load impedances OR reduce spike amplitude

Band-Pass Filtering

- Spike spectrum is "whiter" than that of modulated signal \Rightarrow BP filter will reduce **relative** spike amplitude^{19,23,24}
- Clock frequency tracks BP filter's center frequency \Rightarrow low Q filter, Q ~ 5
- Residual offset ~ 0.5µV!

Nested Chopping

- Inner HF chopper removes 1/f noise
- Outer LF chopper removes residual offset²¹
- Residual offset ~ 100nV, but reduced bandwidth
- Note: input choppers should not be merged!

Dead-Banding

- During dead-band amplifiers output is tri-stated^{26,27,28}
- Residual offset ~ 200nV!
- BUT loss of gain and aliasing due to S&H action ⇒ slightly worse noise performance

Dealing with Spikes: Overview

- BP Filtering: ~ $0.5\mu V$ offset, complex clock timing
- Dead-banding: ~ 200nV offset, wide BW
- Nested chopping: ~ 100nV offset, but limited BW

Last two techniques represent best compromise between offset magnitude and circuit complexity

Chopping Artifacts (Ripple)

Modulated offset \Rightarrow chopping artifacts (ripple)

- Can be removed by a low-pass filter
- BUT filter cut-off frequency must be quite low ⇒ difficult to realize on chip

UPC 2009

AC Coupling

- AC coupling blocks the amplifier's offset ⇒ no output ripple!
- But cut-off frequency must again be quite low

UPC 2009

DC Servo Loop

- DC "servo" loop suppress the amplifier's offset^{34,35}
- Integrator is not in the main signal path
 ⇒ much easier to realize a low cut-off frequency
- Residual ripple can be removed by a simple LPF

Auto-zeroing and Chopping

- Compared to standard AZ, significantly improves LF noise performance^{30,31,32,33}
- Much less ripple than with chopping alone
- Choosing f_{ch} = 2f_{az} ⇒ residual offset of auto-zeroing is exactly averaged ⇒ aliased noise has notch at DC

Switched Capacitor Filter

- Chopped offset is integrated & the triangular ripple is then sampled at the zero-crossings^{9,37,38}
- SC filter essentially eliminates residual ripple
- Filter introduces delay and a (small) noise penalty

Digital Filtering

- Chopped signal is digitized
- Demodulation is done digitally^{31,39}
- Chopper artifacts are removed by a digital LPF e.g. a sinc filter with notches at f_{ch}

Dealing with Artifacts: Overview

Reduce the amplifier's initial offset

- Auto-zeroing and chopping: increased noise
- DC servo: still requires some analog filtering
- Switched capacitor filtering

Digital Filtering

- Very low cut-off frequencies can be realized
- Decimation filter of a $\Sigma\Delta$ ADC can be used to remove chopper artifacts \Rightarrow no extra overhead

Chopping: Summary

- Offsets in the range of 50nV-10µV can be achieved
- Timing skew limits offset reduction to about 60dB
- Fundamental loss of bandwidth (unless offset-stabilized topologies can be used)
- Eliminates 1/f noise, noise floor set by thermal noise
- DOC technique of choice when noise or offset performance is paramount e.g. in biomedical amplifiers, low-power opamps, smart sensors etc.

Some Caveats

- Chopping and auto-zeroing rely on amplifier linearity
- Amplifier non-linearity will result in a residual offset!
- Presence of timing jitter ⇒ variable settling (AZ) or non-50% duty-cycles (chopping) ⇒ voltage noise
- Finite switch resistance ⇒ trade-off between CI, thermal noise and BW limitations

Summary

- Offset and 1/f are part of life!
- Trimming
 - reduces offset but not 1/f noise
 - o simple, no loss of bandwidth
- Auto-zeroing
 - \circ eliminates 1/*f* noise, but noise aliasing \Rightarrow LF noise
 - \circ Auto-zero period \Rightarrow Loss of bandwidth
 - $_{\circ}$ CT operation \Rightarrow OS and Ping-pong topologies
- Chopping
 - \circ eliminates 1/f noise \Rightarrow best noise efficiency
 - $_{\odot}$ LPF \Rightarrow loss of bandwidth (unless OS is used)
- Nested DOC techniques \Rightarrow sub-microvolt offset